Inference and Modeling with Log-concave Distributions
نویسنده
چکیده
Log-concave distributions are an attractive choice for modeling and inference, for several reasons: The class of log-concave distributions contains most of the commonly used parametric distributions and thus is a rich and flexible nonparametric class of distributions. Further, the MLE exists and can be computed with readily available algorithms. Thus, no tuning parameter, such as a bandwidth, is necessary for estimation. Due to these attractive properties, there has been considerable recent research activity concerning the theory and applications of log-concave distributions. This article gives a review of these results.
منابع مشابه
Comparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملA Note on Log-Concavity
This is a small observation concerning scale mixtures and their log-concavity. A function f(x) ≥ 0, x ∈ Rn is called log-concave if f (λx + (1− λ)y) ≥ f(x)f(y) (1) for all x,y ∈ Rn, λ ∈ [0, 1]. Log-concavity is important in applied Bayesian Statistics, since a distribution with a log-concave density is easy to treat with many different approximate inference techniques. For example, log-concavit...
متن کاملLog-Concavity of Combinations of Sequences and Applications to Genus Distributions
We formulate conditions on a set of log-concave sequences, under which any linear combination of those sequences is log-concave, and further, of conditions under which linear combinations of log-concave sequences that have been transformed by convolution are log-concave. These conditions involve relations on sequences called synchronicity and ratio-dominance, and a characterization of some biva...
متن کاملApproximation by Log - Concave Distributions with Applications to Regression
We study the approximation of arbitrary distributions P on ddimensional space by distributions with log-concave density. Approximation means minimizing a Kullback–Leibler type functional. We show that such an approximation exists if, and only if, P has finite first moments and is not supported by some hyperplane. Furthermore we show that this approximation depends continuously on P with respect...
متن کاملA Universal Generator for Discrete Log-concave Distributions
We give an algorithm that can be used to sample from any discrete log-concave distribution (e.g. the binomial and hypergeometric distributions). It is based on rejection from a discrete dominating distribution that consists of parts of the geometric distribution. The algorithm is uniformly fast for all discrete log-concave distributions and not much slower than algorithms designed for a single ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013